A comparison of risk-premium forecasts implied by parametric versus nonparametric conditional mean estimators*

نویسندگان

  • Thomas H. McCurdy
  • Thanasis Stengos
چکیده

This paper computes parametric estimates of a time-varying risk premium model and compares the one-step-ahead forecasts implied by that model with those given by a nonparametric kernel estimator of the conditional mean function. The conditioning information used for the nonparametric analysis is that implied by the theoretical model of time-varying risk. Thus, the kernel estimator is used, in conjunction with a nonparametric diagnostic test for in-sample residual nonlinear structure, to assess the adequacy of the parametric model in capturing any structure in the excess returns. Our results support the parametric specification of an asset pricing model in which the conditional beta is the ratio of the relevant components of the conditional covariance matrix of returns modelled as a bivariate generalized ARCH process. Although the predictable component of the conditional moments is relatively small, the parametric estimator of the risk premia has somewhat more out-of-sample forecasting ability than does the kernel estimator. Hence, the superior in-sample performance of the latter may be attributed to overfitting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

On Semiparametric Mode Regression Estimation

It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean and median. In this paper, the relation between mode, mean and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function...

متن کامل

On Semiparametric Mode Regression Estimation

It has been found that, for a variety of probability distributions, there is a surpring linear relation between mode, mean and median. In this paper, the relation between mode, mean and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function i...

متن کامل

Forecasting Equity Premium: Global Historical Average versus Local Historical Average and Constraints∗

The equity premium, return on equity minus return on risk-free asset, is expected to be positive. We consider imposing such positivity constraint in local historical average (LHA) in nonparametric kernel regression framework. It is also extended to the semiparametric single index model when multiple predictors are used. We construct the constrained LHA estimator via an indicator function which ...

متن کامل

Semiparametric Multivariate GARCH Model∗

To capture the missed information in the standardized errors by parametric multivariate generalized autoregressive conditional heteroskedasticity (MV-GARCH) model, we propose a new semiparametric MV-GARCH (SM-GARCH) model. This SM-GARCH model is a twostep model: firstly estimating parametric MV-GARCH model, then using nonparametric skills to model the conditional covariance matrix of the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001